Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Adv Med Sci ; 68(2): 379-385, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37806183

RESUMEN

PURPOSE: The primary limiting factor in achieving cures for patients with cancer, particularly ovarian cancer, is drug resistance. The mechanisms of drug resistance of cancer cells during chemotherapy may include compounds of the extracellular matrix, such as the transforming growth factor-beta-induced protein (TGFBI). In this study, we aimed to analyze the TGFBI gene and protein expression in different sensitive and drug-resistant ovarian cancer cell lines, as well as test if TGFBI can be involved in the response to topotecan (TOP) at the very early stages of treatment. MATERIALS AND METHODS: In this study, we conducted a detailed analysis of TGFBI expression in different ovarian cancer cell lines (A2780, A2780TR1, A2780TR2, W1, W1TR, SKOV-3, PEA1, PEA2 and PEO23). The level of TGFBI mRNA (QPCR), intracellular and extracellular protein (Western blot analysis) were assessed in this study. RESULTS: We observed upregulation of TGFBI mRNA in drug-resistant cell lines and estrogen-receptor positive cell lines, which was supported by overexpression of both intracellular and extracellular TGFBI protein. We also showed the TGFBI expression after a short period of treatment of sensitive ovarian cancer cell lines with TOP. CONCLUSION: The expression of TGFBI in ovarian cancer cell lines suggests its role in the development of drug resistance.


Asunto(s)
Neoplasias Ováricas , Femenino , Humanos , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , ARN Mensajero , Topotecan/farmacología , Topotecan/uso terapéutico , Factor de Crecimiento Transformador beta
2.
Biomed Pharmacother ; 165: 115152, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37442067

RESUMEN

Ovarian cancer is the most common type of gynecologic cancer. One of the leading causes of high mortality is chemoresistance, developed primarily or during treatment. Different mechanisms of drug resistance appear at the cellular and cancer tissue organization levels. We examined the differences in response to the cytotoxic drugs CIS, MTX, DOX, VIN, PAC, and TOP using 2D (two-dimensional) and 3D (three-dimensional) culture methods. We tested the drug-sensitive ovarian cancer cell line W1 and established resistant cell lines to appropriate cytotoxic drugs. The following qualitative and quantitative methods were used to assess: 1) morphology - inverted microscope and hematoxylin & eosin staining; 2) viability - MTT assay; 3) gene expression - a quantitative polymerase chain reaction; 4) identification of proteins - immunohistochemistry, and immunofluorescence. Our results indicate that the drug-sensitive and drug-resistant cells cultured in 3D conditions exhibit stronger resistance than the cells cultured in 2D conditions. A traditional 2D model shows that drug resistance of cancer cells is caused mainly by changes in the expression of genes encoding ATP-binding cassette transporter proteins, components of the extracellular matrix, "new" established genes related to drug resistance in ovarian cancer cell lines, and universal marker of cancer stem cells. Whereas in a 3D model, the drug resistance in spheroids can be related to other mechanisms such as the structure of the spheroid (dense or loose), the cell type (necrotic, quiescent, proliferating cells), drug concentrations or drug diffusion into the dense cellular/ECM structure.


Asunto(s)
Antineoplásicos , Resistencia a Antineoplásicos , Neoplasias Ováricas , Neoplasias Ováricas/química , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Línea Celular Tumoral , Humanos , Femenino , Esferoides Celulares , Técnicas de Cultivo Tridimensional de Células , Antineoplásicos/farmacología
3.
J Pers Med ; 13(4)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37108995

RESUMEN

The aim of the present study was to verify whether the baseline circulating tumor cell (CTC) count might serve as a predictor of overall survival (OS) and metastasis-free survival (MFS) in patients with high-risk prostate cancer (PCa) during a follow-up period of at least 5 years. CTCs were enumerated using three different assay formats in 104 patients: the CellSearch® system, EPISPOT assay and GILUPI CellCollector. A total of 57 (55%) patients survived until the end of the follow-up period, with a 5 year OS of 66% (95% CI: 56-74%). The analysis of univariate Cox proportional hazard models identified a baseline CTC count ≥ 1, which was determined with the CellSearch® system, a Gleason sum ≥ 8, cT ≥ 2c and metastases at initial diagnosis as significant predictors of a worse OS in the entire cohort. The CTC count ≥ 1 was also the only significant predictor of a worse OS in a subset of 85 patients who presented with localized PCa at the baseline. The baseline CTC number did not affect the MFS. In conclusion, the baseline CTC count can be considered a determinant of survival in high-risk PCa and also in patients with a localized disease. However, determining the prognostic value of the CTC count in patients with localized PCa would optimally require longitudinal monitoring of this parameter.

4.
Biomed Pharmacother ; 150: 113036, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35489285

RESUMEN

BACKGROUND: Inherent or developed during treatment drug resistance is the main reason for the low effectiveness of chemotherapy in ovarian cancer. IFI16 is a cytoplasmic/nuclear protein involved in response to virus's infection and cell cycle arrest associated with the cellular senescence. METHODS: Here we performed a detailed IFI16 expression analysis in ovarian cancer cell lines sensitive (A2780) and resistant to doxorubicin (DOX) (A2780DR1 and A2780DR2) and paclitaxel (PAC) (A2780PR1). IFI16 mRNA level, protein level in the nuclear and cytoplasmic fraction (Western blot analysis), the protein expression in cancer cells and nuclei (immunofluorescence analysis) and cancer patient lesions (immunohistochemistry) were performed in this study. RESULTS: We observed upregulation of IFI16 expression in drug resistant cell lines with dominant cytoplasmic localization in DOX-resistant cell lines and nuclear one in the PAC-resistant cell line. The most abundantly overexpressed isoforms of IFI16 were IFI16A and IFI16C. Finally, an analysis of a histological type of ovarian cancer (immunohistochemistry) showed expression in serous ovarian cancer. CONCLUSIONS: Expression of IFI16 in drug-resistant cell lines suggests its role in drug resistance development in ovarian cancer. Expression in serous ovarian cancer suggests its role in the pathogenesis of this histological type.


Asunto(s)
Neoplasias Ováricas , Carcinoma Epitelial de Ovario , Línea Celular Tumoral , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Resistencia a Antineoplásicos/genética , Femenino , Humanos , Interferón gamma , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Fosfoproteínas/metabolismo
5.
Int J Mol Sci ; 23(6)2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35328460

RESUMEN

Ovarian cancer is the most common cause of gynecological cancer death. Cancer Stem Cells (CSCs) characterized by drug transporters and extracellular matrix (ECM) molecules expression are responsible for drug resistance development. The goal of our study was to examine the role of aldehyde dehydrogenase 1A1 (ALDH1A1) expression in paclitaxel (PAC) and topotecan (TOP) resistant ovarian cancer cell lines. In both cell lines, we knocked out the ALDH1A1 gene using the CRISPR/Cas9 technique. Additionally, we derived an ALDH1A1 positive TOP-resistant cell line with ALDH1A1 expression in all cells via clonal selection. The effect of ALDH1A1 gene knockout or clonal selection on the expression of ALDH1A1, drug transporters (P-gp and BCRP), and ECM (COL3A1) was determined by Q-PCR, Western blot and immunofluorescence. Using MTT assay, we compared drug resistance in two-dimensional (2D) and three-dimensional (3D) cell culture conditions. We did not observe any effect of ALDH1A1 gene knockout on MDR1/P-gp expression and drug resistance in the PAC-resistant cell line. The knockout of ALDH1A1 in the TOP-resistant cell line resulted in a moderate decrease of BCRP and COL3A1 expression and weakened TOP resistance. The clonal selection of ALDH1A1 cells resulted in very strong downregulation of BCPR and COL3A1 expression and overexpression of MDR1/P-gp. This finally resulted in decreased resistance to TOP but increased resistance to PAC. All spheroids were more resistant than cells growing as monolayers, but the resistance mechanism differs. The spheroids' resistance may result from the presence of cell zones with different proliferation paces, the density of the spheroid, ECM expression, and drug capacity to diffuse into the spheroid.


Asunto(s)
Neoplasias Ováricas , Topotecan , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa/metabolismo , Familia de Aldehído Deshidrogenasa 1 , Carcinoma Epitelial de Ovario/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Proteínas de Neoplasias/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Paclitaxel/farmacología , Retinal-Deshidrogenasa/genética , Retinal-Deshidrogenasa/metabolismo , Topotecan/farmacología
6.
Int J Mol Sci ; 22(8)2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33921897

RESUMEN

Our goal was to examine the anticancer effects of piperine against the resistant human ovarian cancer cells and to explore the molecular mechanisms responsible for its anticancer effects. Our study used drug-sensitive ovarian cancer cell line W1 and its sublines resistant to paclitaxel (PAC) and topotecan (TOP). We analyzed the cytotoxic effect of piperine and cytostatic drugs using an MTT assay. The impact of piperine on protein expression was determined by immunofluorescence and Western blot. We also examined its effect on cell proliferation and migration. We noticed a different level of piperine resistance between cell lines. Piperine increases the cytotoxic effect of PAC and TOP in drug-resistant cells. We observed an increase in PTPRK expression correlated with decreased pTYR level after piperine treatment and downregulation of P-gp and BCRP expression. We also noted a decrease in COL3A1 and TGFBI expression in investigated cell lines and increased COL3A1 expression in media from W1PR2 cells. The expression of Ki67 protein and cell proliferation rate decreased after piperine treatment. Piperine markedly inhibited W1TR cell migration. Piperine can be considered a potential anticancer agent that can increase chemotherapy effectiveness in cancer patients.


Asunto(s)
Alcaloides/farmacología , Antineoplásicos/farmacología , Benzodioxoles/farmacología , Piperidinas/farmacología , Alcamidas Poliinsaturadas/farmacología , Familia de Aldehído Deshidrogenasa 1/genética , Familia de Aldehído Deshidrogenasa 1/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Colágeno Tipo III/genética , Resistencia a Antineoplásicos/genética , Proteínas de la Matriz Extracelular/genética , Femenino , Humanos , Neoplasias Ováricas/genética , Paclitaxel/farmacología , Fosforilación , Retinal-Deshidrogenasa/genética , Retinal-Deshidrogenasa/metabolismo , Factor de Crecimiento Transformador beta/genética
7.
J Transl Med ; 19(1): 130, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33785019

RESUMEN

BACKGROUND: Steroid resistant (SR) nephrotic syndrome (NS) affects up to 30% of children and is responsible for fast progression to end stage renal disease. Currently there is no early prognostic marker of SR and studied candidate variants and parameters differ highly between distinct ethnic cohorts. METHODS: Here, we analyzed 11polymorphic variants, 6 mutations, SOCS3 promoter methylation and biochemical parameters as prognostic markers in a group of 124 Polish NS children (53 steroid resistant, 71 steroid sensitive including 31 steroid dependent) and 55 controls. We used single marker and multiple logistic regression analysis, accompanied by prediction modeling using neural network approach. RESULTS: We achieved 92% (AUC = 0.778) SR prediction for binomial and 63% for multinomial calculations, with the strongest predictors ABCB1 rs1922240, rs1045642 and rs2235048, CD73 rs9444348 and rs4431401, serum creatinine and unmethylated SOCS3 promoter region. Next, we achieved 80% (AUC = 0.720) in binomial and 63% in multinomial prediction of SD, with the strongest predictors ABCB1 rs1045642 and rs2235048. Haplotype analysis revealed CD73_AG to be associated with SR while ABCB1_AGT was associated with SR, SD and membranoproliferative pattern of kidney injury regardless the steroid response. CONCLUSIONS: We achieved prediction of steroid resistance and, as a novelty, steroid dependence, based on early markers in NS children. Such predictions, prior to drug administration, could facilitate decision on a proper treatment and avoid diverse effects of high steroid doses.


Asunto(s)
Síndrome Nefrótico , Niño , Resistencia a Medicamentos/genética , Haplotipos , Humanos , Riñón , Síndrome Nefrótico/tratamiento farmacológico , Síndrome Nefrótico/genética , Regiones Promotoras Genéticas/genética , Esteroides/uso terapéutico
8.
Cancers (Basel) ; 12(1)2020 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-31936460

RESUMEN

The aim of this study was to investigate whether the enumeration of circulating tumor cells (CTCs) in blood can differentiate between true localized and metastatic prostate cancer. A cross-sectional study of 104 prostate cancer patients with newly diagnosed high-risk prostate cancer was conducted. In total, 19 patients presented metastatic disease and 85 were diagnosed with localized disease. Analyses included intergroup comparison of CTC counts, determined using the CellSearch® system, EPISPOT assay and GILUPI CellCollector®, and ROC analysis verifying the accuracy of CTC count as a maker of disseminated prostate cancer. The vast majority (94.7%) of patients with advanced-stage cancer tested positively for CTCs in at least one of the assays. However, significantly higher CTC counts were determined with the CellSearch® system compared to EPISPOT assay and GILUPI CellCollector®. Identification of ≥4 CTCs with the CellSearch® system was the most accurate predictor of metastatic disease (sensitivity 0.500; specificity 0.900; AUC (95% CI) 0.760 (0.613-0.908). Furthermore, we tried to create a model to enhance the specificity and sensitivity of metastatic prediction with CTC counts by incorporating patient's clinical data, including PSA serum levels, Gleason score and clinical stage. The composite biomarker panel achieved the following performance: sensitivity, 0.611; specificity, 0.971; AUC (95% CI), 0.901 (0.810-0.993). Thus, although the sensitivity of CTC detection needs to be further increased, our findings suggest that high CTC counts might contribute to the identification of high-risk prostate cancer patients with occult metastases at the time of diagnosis.

9.
Cent Eur J Immunol ; 44(2): 210-213, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31530992

RESUMEN

The non-collagenous (NC1) domain of α3 and α5 chains of type IV collagen are eminent targets of abnormal immune response in anti-glomerular basement membrane (anti-GBM) disease, which can be diagnosed by the presence of strong linear IgG staining along GBM detected by direct immunofluorescence. The presence of linear GBM fixation in renal allograft is a rare finding. We observed a 33-year-old male with de novo renal failure in a kidney transplant. An examination of a kidney biopsy specimen revealed, in light microscopy, mild mesangial hypercellularity together with mild focal interstitial fibrosis and sparse inflammatory infiltrate. In immunofluorescence microscopy strong linear IgG staining along the capillary walls was seen. Serum anti-GBM antibodies were negative and no mutation in exons coding NC1 domains of α3 and α5 chains of type IV collagen were detected. We described a rare case of a patient with atypical anti-GBM disease in renal allograft, caused probably by the same process which affected the native kidneys.

10.
Int J Mol Sci ; 20(16)2019 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-31412536

RESUMEN

One of the main obstacles to the effective treatment of ovarian cancer patients continues to be the drug resistance of cancer cells. Osteoblast-Specific Factor 2 (OSF-2, Periostin) is a secreted extracellular matrix protein (ECM) expressed in fibroblasts during bone and teeth development. Expression of OSF-2 has been also related to the progression and drug resistance of different tumors. The present study investigated the role of OSF-2 by evaluating its expression in the primary serous ovarian cancer cell line, sensitive (W1) and resistant to doxorubicin (DOX) (W1DR) and methotrexate (MTX) (W1MR). The OSF-2 transcript (real-time PCR analysis), protein expression in cell lysates and cell culture medium (western blot), and expression of the OSF-2 protein in cell lines (immunofluorescence) were investigated in this study. Increased expression of OSF-2 mRNA was observed in drug-resistant cells and followed by increased protein expression in cell culture media of drug-resistant cell lines. A subpopulation of ALDH1A1-positive cells was noted for W1DR and W1MR cell lines; however, no direct co-expression with OSF-2 was demonstrated. Both drugs induced OSF-2 expression after a short period of exposure of the drug-sensitive cell line to DOX and MTX. The obtained results indicate that OSF-2 expression might be associated with the development of DOX and MTX resistance in the primary serous W1 ovarian cancer cell line.


Asunto(s)
Antineoplásicos/farmacología , Moléculas de Adhesión Celular/genética , Resistencia a Antineoplásicos/genética , Neoplasias Ováricas/genética , Familia de Aldehído Deshidrogenasa 1/genética , Familia de Aldehído Deshidrogenasa 1/metabolismo , Moléculas de Adhesión Celular/metabolismo , Línea Celular Tumoral , Proteínas de la Matriz Extracelular/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Ováricas/metabolismo , Retinal-Deshidrogenasa/genética , Retinal-Deshidrogenasa/metabolismo
11.
Cancers (Basel) ; 11(6)2019 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-31185699

RESUMEN

The characterization of circulating tumor cells (CTCs) can lead to a promising strategy for monitoring residual or relapsing prostate cancer (PCa) after local therapy. The aim of this study was to compare three innovative technologies for CTC enumeration in 131 high-risk patients with PCa, before and after radiotherapy, combined with androgen deprivation. The CTC number was tested using the FDA-cleared CellSearch® system, the dual fluoro-EPISPOT assay that only detects functional CTCs, and the in vivo CellCollector® technology. The highest percentage of CTC-positive patients was detected with the CellCollector® (48%) and dual fluoro-EPISPOT (42%) assays, while the CellSearch® system presented the lowest rate (14%). Although the concordance among methods was only 23%, the cumulative positivity rate was 79%. A matched-pair analysis of the samples before, and after, treatment suggested a trend toward a decrease in CTC count after treatment with all methods. CTC tended to be positivity correlated with age for the fluoro-EPISPOT assay and with PSA level from the data of three assays. Combining different CTC assays improved CTC detection rates in patients with non-metastatic high-risk PCa before and after treatment. Our findings do not support the hypothesis that radiotherapy leads to cancer cell release in the circulation.

12.
Int J Mol Sci ; 20(8)2019 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-31027318

RESUMEN

Background: Ovarian cancer is the 7th most common cancer and 8th most mortal cancer among woman. The standard treatment includes cytoreduction surgery followed by chemotherapy. Unfortunately, in most cases, after treatment, cancer develops drug resistance. Decreased expression and/or activity of protein phosphatases leads to increased signal transduction and development of drug resistance in cancer cells. Methods: Using sensitive (W1, A2780) and resistant ovarian cancer cell lines, the expression of Protein Tyrosine Phosphatase Receptor Type K (PTPRK) was performed at the mRNA (real-time PCR analysis) and protein level (Western blot, immunofluorescence analysis). The protein expression in ovarian cancer tissues was determined by immunohistochemistry. Results: The results showed a decreased level of PTPRK expression in ovarian cancer cell lines resistant to cisplatin (CIS), paclitaxel (PAC), doxorubicin (DOX), topotecan (TOP), vincristine (VIN) and methotrexate (MTX). Additionally, the lower PTPRK expression was observed in Aldehyde Dehydrogenase 1 Family Member A1 (ALDH1A1) positive cancer stem cells (CSCs) population, suggesting the role of PTPRK downregulation in primary as well as acquired resistance to cytotoxic drugs. Conclusions: These results provide important insights into the role of PTPRK in mechanism leading to drug resistance in ovarian cancer and has raised important questions about the role of imbalance in processes of phosphorylation and dephosphorylation.


Asunto(s)
Aldehído Deshidrogenasa/metabolismo , Regulación hacia Abajo/genética , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Células Madre Neoplásicas/metabolismo , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/genética , Familia de Aldehído Deshidrogenasa 1 , Línea Celular Tumoral , Femenino , Humanos , Células Madre Neoplásicas/patología , Neoplasias Ováricas/tratamiento farmacológico , Fosfotirosina/metabolismo , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo , Retinal-Deshidrogenasa , Topotecan/farmacología , Topotecan/uso terapéutico
13.
J Cancer ; 9(23): 4413-4421, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30519347

RESUMEN

Background: Low effectiveness of chemotherapy in ovarian cancer results from development of drug resistance during treatment. Topotecan (TOP) is a chemotherapeutic drug used in second-line chemotherapy of this cancer. Unfortunately, during treatment cancer can develop diverse cellular and tissue specific mechanisms of resistance to cytotoxic drugs. Methods: We analyzed development of TOP resistance in ovarian cancer cell lines (A2780 and W1). On the base of our previous results where a set of "new genes" with different functions that can be related to TOP-resistance was described hereby we performed detailed analysis of MYOT expression. MYOT mRNA level (real time PCR analysis), protein expression in cell lysates and cell culture medium (western blot analysis) and protein expression in cancer cells (immunofluorescence analysis) were determined in this study. Results: We observed increased expression of MYOT in TOP resistant cell lines at both mRNA and protein level. MYOT, together with extracellular matrix molecules like COL1A2 and COL15A1 were also secreted to corresponding cell culture media. Conclusion: Our results suggest that upregulation of MYOT can be related to TOP resistance in ovarian cancer cell lines.

14.
Int J Mol Sci ; 20(1)2018 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-30583585

RESUMEN

A major contributor leading to treatment failure of ovarian cancer patients is the drug resistance of cancer cell. CSCs- (cancer stem cells) and ECM (extracellular matrix)-related models of drug resistance are described as independently occurring in cancer cells. Lysyl oxidase (LOX) is another extracellular protein involved in collagen cross-linking and remodeling of extracellular matrix and has been correlated with tumor progression. The expression of LOX, COL1A2, COL3A1, and ALDH1A1 was performed in sensitive (A2780, W1) and resistant to paclitaxel (PAC) (A2780PR1 and W1PR2) and topotecan (TOP) (W1TR) cell lines at the mRNA (real-time PCR analysis) and protein level (Western blot and immunofluorescence analysis). The ALDH1A1 activity was measured with the ALDEFLUOR test and flow cytometry analysis. The protein expression in ovarian cancer tissues was determined by immunohistochemistry. We observed an increased expression of LOX and collagens in PAC and TOP resistant cell lines. Subpopulations of ALDH1A1 positive and negative cells were also noted for examined cell lines. Additionally, the coexpression of LOX with ALDH1A1 and COL1A2 with ALDH1A1 was observed. The expression of LOX, collagens, and ALDH1A1 was also detected in ovarian cancer lesions. In our study LOX, ALDH1A1 and collagens were found to be coordinately expressed by cells resistant to PAC (LOX, ALDH1A1, and COL1A2) or to TOP (LOX and ALDH1A1). This represents the study where molecules related with CSCs (ALDH1A1) and ECM (LOX, collagens) models of drug resistance are described as occurring simultaneously in ovarian cancer cells treated with PAC and TOP.


Asunto(s)
Aldehído Deshidrogenasa/metabolismo , Colágeno Tipo I/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Neoplasias Ováricas/metabolismo , Proteína-Lisina 6-Oxidasa/metabolismo , Aldehído Deshidrogenasa/genética , Familia de Aldehído Deshidrogenasa 1 , Línea Celular Tumoral , Colágeno Tipo I/genética , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Matriz Extracelular/metabolismo , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Paclitaxel/farmacología , Cultivo Primario de Células , Proteína-Lisina 6-Oxidasa/genética , Retinal-Deshidrogenasa , Topotecan/farmacología
15.
Int J Mol Sci ; 19(10)2018 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-30257426

RESUMEN

The major cause of ovarian cancer treatment failure in cancer patients is inherent or acquired during treatment drug resistance of cancer. Matrix Gla protein (MGP) is a secreted, non-collagenous extracellular matrix protein involved in inhibition of tissue calcification. Recently, MGP expression was related to cellular differentiation and tumor progression. A detailed MGP expression analysis in sensitive (A2780) and resistant to paclitaxel (PAC) (A2780PR) and topotecan (TOP) (A2780TR) ovarian cancer cell lines and their corresponding media was performed. MGP mRNA level (real time PCR analysis) and protein expression in cell lysates and cell culture medium (Western blot analysis) and protein expression in cancer cells (immunofluorescence analysis) and cancer patient lesions (immunohistochemistry) were determined in this study. We observed increased expression of MGP in PAC and TOP resistant cell lines at both mRNA and protein level. MGP protein was also detected in the corresponding culture media. Finally, we detected expression of MGP protein in ovarian cancer lesions from different histological type of cancer. MGP is an important factor that might contribute to cancer resistance mechanism by augmenting the interaction of cells with ECM components leading to increased resistance of ovarian cancer cells to paclitaxel and topotecan. Expression found in ovarian cancer tissue suggests its possible role in ovarian cancer pathogenesis.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Proteínas de Unión al Calcio/genética , Resistencia a Antineoplásicos , Proteínas de la Matriz Extracelular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Ováricas/tratamiento farmacológico , Paclitaxel/farmacología , Inhibidores de Topoisomerasa I/farmacología , Topotecan/farmacología , Proteínas de Unión al Calcio/análisis , Línea Celular Tumoral , Proteínas de la Matriz Extracelular/análisis , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Proteína Gla de la Matriz
16.
Molecules ; 23(4)2018 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-29649113

RESUMEN

Development of drug resistance is the main reason for low chemotherapy effectiveness in treating ovarian cancer. Paclitaxel (PAC) is a chemotherapeutic drug used in the treatment of this cancer. We analysed the development of PAC resistance in two ovarian cancer cell lines. Exposure of drug-sensitive cell lines (A2780 and W1) to PAC was used to determine the primary response. An established response was determined in PAC-resistant sublines of the A2780 and W1 cell lines. qRT-PCR was performed to measure the expression levels of specific genes. We observed decreased expression of the PCDH9, NSBP1, MCTP1 and SEMA3A genes in the PAC-resistant cell lines. Short-term exposure to PAC led to increased expression of the MDR1 and BCRP genes in the A2780 and W1 cell lines. In the A2780 cell line, we also observed increased expression of the C4orf18 gene and decreased expression of the PCDH9 and SEMA3A genes after PAC treatment. In the W1 cell line, short-term treatment with PAC upregulated the expression of the ALDH1A1 gene, a marker of Cancer stem cells (CSCs). Our results suggest that downregulation of the PCDH9, NSBP1, MCTP1 and SEMA3A genes and upregulation of the MDR1, BCRP, C4orf18 and ALDH1A1 genes may be related to PAC resistance.


Asunto(s)
Resistencia a Antineoplásicos , Redes Reguladoras de Genes , Neoplasias Ováricas/genética , Paclitaxel/farmacología , Línea Celular Tumoral , Femenino , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos
17.
Clin Chem ; 64(2): 297-306, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29122836

RESUMEN

BACKGROUND: Molecular characterization of circulating tumor cells (CTCs) is important for selecting patients for targeted treatments. We present, for the first time, results on gene expression profiling of CTCs isolated in vivo from high-risk prostate cancer (PCa) patients compared with CTC detected by 3 protein-based assays-CellSearch®, PSA-EPISPOT, and immunofluorescence of CellCollector® in vivo-captured CTCs-using the same blood draw. METHODS: EpCAM-positive CTCs were isolated in vivo using the CellCollector from 108 high-risk PCa patients and 36 healthy volunteers. For 27 patients, samples were available before and after treatment. We developed highly sensitive multiplex RT-qPCR assays for 14 genes (KRT19, EpCAM, CDH1, HMBS, PSCA, ALDH1A1, PROM1, HPRT1, TWIST1, VIM, CDH2, B2M, PLS3, and PSA), including epithelial markers, stem cell markers, and epithelial-to-mesenchymal-transition (EMT) markers. RESULTS: We observed high heterogeneity in gene expression in the captured CTCs for each patient. At least 1 marker was detected in 74 of 105 patients (70.5%), 2 markers in 45 of 105 (40.9%), and 3 markers in 16 of 105 (15.2%). Epithelial markers were detected in 31 of 105 (29.5%) patients, EMT markers in 46 of 105 (43.8%), and stem cell markers in 15 of 105 (14.3%) patients. EMT-marker positivity was very low before therapy (2 of 27, 7.4%), but it increased after therapy (17 of 27, 63.0%), whereas epithelial markers tended to decrease after therapy (2 of 27, 7.4%) compared with before therapy (13 of 27, 48.1%). At least 2 markers were expressed in 40.9% of patients, whereas the positivity was 19.6% for CellSearch, 38.1% for EPISPOT, and 43.8% for CellCollector-based IF-staining. CONCLUSIONS: The combination of in vivo CTC isolation with downstream RNA analysis is highly promising as a high-throughput, specific, and ultrasensitive approach for multiplex liquid biopsy-based molecular diagnostics.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Reacción en Cadena de la Polimerasa Multiplex/métodos , Células Neoplásicas Circulantes/metabolismo , Neoplasias de la Próstata/sangre , Neoplasias de la Próstata/genética , Estudios de Casos y Controles , Ensayo de Inmunoadsorción Enzimática/métodos , Molécula de Adhesión Celular Epitelial/sangre , Transición Epitelial-Mesenquimal/genética , Técnica del Anticuerpo Fluorescente/métodos , Heterogeneidad Genética , Humanos , Masculino , Antígeno Prostático Específico/sangre , Sensibilidad y Especificidad
18.
Oncotarget ; 8(43): 74466-74478, 2017 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-29088800

RESUMEN

PURPOSE: The aim of the present study is to determine the expression of LUM in drug-resistant ovarian cancer cell lines. METHODS: Doxorubicin- (DOX), topotecan- (TOP) and vincristine- (VIN) resistant variants of the W1 ovarian cancer cell line were used in this study. We used quantitative real-time polymerase chain reactions to determine LUM mRNA levels. Protein expression was detected using Western blot and immunocytochemistry assays. Protein glycosylation was investigated using PGNase F digestion. Immunohistochemistry assays were used to determine protein expression in ovarian cancer patients. RESULTS: We observed increased expression of LUM in drug-resistant cell lines at both the mRNA and the protein level. The most abundant LUM expression was observed in TOP-resistant cell line. We observed LUM bands that corresponded to different molecular masses, and the most abundant LUM form was the secreted form, which had a mass of 50 kDa. Double immunofluorescence analysis showed co-expression of LUM and COL3A1 as well as the presence of extracellular COL3A1 in the TOP-resistant cell line. Finally, we detected the LUM protein in ovarian cancer tissue. CONCLUSION: The expression of LUM in cytostatic-resistant cell lines suggests its role in drug resistance. The co-expression of LUM and COL3A1 indicates the significance of LUM in collagen fibre assembly. Expression in ovarian cancer tissue suggests that LUM can play a role in ovarian cancer pathogenesis in ways similar to other cancers.

19.
Molecules ; 22(10)2017 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-29027969

RESUMEN

Low efficiency of chemotherapy in ovarian cancer results from the development of drug resistance. Cisplatin (CIS) and topotecan (TOP) are drugs used in chemotherapy of this cancer. We analyzed the development of CIS and TOP resistance in ovarian cancer cell lines. Incubation of drug sensitive cell lines (W1 and A2780) with cytostatic drugs was used to determine the primary response to CIS and TOP. Quantitative polymerase chain reaction (Q-PCR) was performed to measure the expression levels of the genes. We observed decreased expression of the MCTP1 gene in all resistant cell lines. We observed overexpression of the S100A3 and HERC5 genes in TOP-resistant cell lines. Increased expression of the S100A3 gene was also observed in CIS-resistant A2780 sublines. Overexpression of the C4orf18 gene was observed in CIS- and TOP-resistant A2780 sublines. A short time of exposure to CIS led to increased expression of the ABCC2 gene in the W1 and A2780 cell lines and increased expression of the C4orf18 gene in the A2780 cell line. A short time of exposure to TOP led to increased expression of the S100A3 and HERC5 genes in both sensitive cell lines, increased expression of the C4orf18 gene in the A2780 cell line and downregulation of the MCTP1 gene in the W1 cell line. Our results suggest that changes in expression of the MCTP1, S100A3 and C4orf18 genes may be related to both CIS and TOP resistance. Increased expression of the HERC5 gene seems to be important only in TOP resistance.


Asunto(s)
Resistencia a Antineoplásicos/genética , Proteínas de Neoplasias/genética , Neoplasias Ováricas/tratamiento farmacológico , Línea Celular Tumoral , Cisplatino/administración & dosificación , Cisplatino/efectos adversos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Proteínas S100/genética , Topotecan/administración & dosificación , Topotecan/efectos adversos
20.
Oncotarget ; 8(30): 49944-49958, 2017 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-28611294

RESUMEN

PURPOSE: The present study is to discover a new genes associated with drug resistance development in ovarian cancer. METHODS: We used microarray analysis to determine alterations in the level of expression of genes in cisplatin- (CisPt), doxorubicin- (Dox), topotecan- (Top), and paclitaxel- (Pac) resistant variants of W1 and A2780 ovarian cancer cell lines. Immunohistochemistry assay was used to determine protein expression in ovarian cancer patients. RESULTS: We observed alterations in the expression of 22 genes that were common to all three cell lines that were resistant to the same cytostatic drug. The level of expression of 13 genes was upregulated and that of nine genes was downregulated. In the CisPt-resistant cell line, we observed downregulated expression of ABCC6, BST2, ERAP2 and MCTP1; in the Pac-resistant cell line, we observe upregulated expression of ABCB1, EPHA7 and RUNDC3B and downregulated expression of LIPG, MCTP1, NSBP1, PCDH9, PTPRK and SEMA3A. The expression levels of three genes, ABCB1, ABCB4 and IFI16, were upregulated in the Dox-resistant cell lines. In the Top-resistant cell lines, we observed increased expression levels of ABCG2, HERC5, IFIH1, MYOT, S100A3, SAMD4A, SPP1 and TGFBI and decreased expression levels of MCTP1 and PTPRK. The expression of EPHA7, IFI16, SPP1 and TGFBI was confirmed at protein level in analyzed ovarian cancer patients.. CONCLUSIONS: The expression profiles of the investigated cell lines indicated that new candidate genes are related to the development of resistance to the cytostatic drugs that are used in first- and second-line chemotherapy of ovarian cancer.


Asunto(s)
Resistencia a Antineoplásicos/genética , Neoplasias Ováricas/genética , Antineoplásicos/farmacología , Línea Celular Tumoral , Biología Computacional/métodos , Femenino , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Inmunohistoquímica , Neoplasias Ováricas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...